Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$
${ }^{\text {a }}$ Dept. of Pharm. Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ${ }^{\mathbf{b}}$ Dept. of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.107$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-(4-tert-Butylbenzyl)-1H-indole-3-carbaldehyde

The title compound, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$, was obtained by the reaction of indole-3-carbaldehyde with 4-tert-butylbenzyl chloride and recrystallization of the product from ethanol. The indole ring system is nearly planar and makes a dihedral angle of $74.45(3)^{\circ}$ with the plane of the 4-tert-butylphenyl ring.

Comment

1-Benzylindole-3-carbaldehyde readily undergoes base-catalysed condensation with azabicylo[2.2.2]octan-3-one (Sonar et al., 2003). However, 1-(4-tert-butylbenzyl)indole-3-carbaldehyde failed to undergo a similar condensation reaction. In view of the unusual behavior of this aldehyde, its X-ray crystallographic structure was determined to obtain details of the molecular conformation.

(I)

1-(4-tert-Butylbenzyl)-1H-indole-3-carbaldehyde, (I), was prepared by the reaction of indole-3-carbaldehyde with 4-tertbutylbenzyl chloride in the presence of potassium carbonate and dimethylformamide under reflux, and the resultant product was crystallized from ethanol.

Fig. 1 shows a view of (I) and selected geometric parameters are presented in Table 1. The indole ring system is planar, with bond distances and bond angles comparable with those reported for other indole derivatives (Mason et al., 2003). The plane of the indole ring system makes a dihedral angle of 74.45 (3) ${ }^{\circ}$ with the plane of the benzene ring of the 4 -tertbutylbenzyl group.

Experimental

A mixture of 1.45 g (10 mmol) of indole-3-carbaldehyde, 1.982 g (10.85 mmol) of 4-tert-butylbenzyl chloride, 1.4 g of anhydrous

Received 7 July 2006
Accepted 11 July 2006
$\mathrm{K}_{2} \mathrm{CO}_{3}$ and 10 ml DMF was vigorously stirred and refluxed for 2 h . The cooled reaction mixture was poured into 40 ml of water and the precipitated solid was collected by filtration and air dried. Recrystallization from ethanol afforded pale-yellow crystals.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$

$M_{r}=291.38$
Monoclinic, $P 2_{1} / n$
$a=11.5242$ (11) Å
$b=10.2024$ (10) \AA
$c=13.4072$ (13) \AA
$\beta=95.446$ (4) ${ }^{\circ}$
$V=1569.2(3) \AA^{3}$

$Z=4$

$D_{x}=1.233 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.58 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Block, pale yellow
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Bruker-Nonius X8 Proteum diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker-Nonius, 2004) $T_{\text {min }}=0.892, T_{\text {max }}=0.918$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=1.08$
2817 reflections
203 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0507 P)^{2}\right. \\
& +0.8252 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0053 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

N1-C2	$1.3573(17)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3762(19)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.4671(16)$	$\mathrm{C} 3-\mathrm{C} 10$	$1.4289(18)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.2268(17)$		
			$112.43(10)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$110.56(11)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	$121.59(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	$123.96(12)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$123.35(12)$
$\mathrm{C} 10-\mathrm{C} 3-\mathrm{C} 4$	$129.64(12)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 18$	$119.57(11)$
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 3$	$125.26(13)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 18$	
			$2.9(2)$

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained $\mathrm{C}-\mathrm{H}$ distances of 0.99 $\left(\mathrm{CH}_{2}\right), 0.98\left(\mathrm{CH}_{3}\right)$ and $0.95 \AA\left(\mathrm{Csp}^{2}\right) . U_{\text {iso }}(\mathrm{H})$ values were set at either $1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}$ (other C).

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/ $P C$ (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local procedures.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism Grant AA12600.

References

Bruker-Nonius (2004). APEX2. Bruker-Nonius Inc., Madison, Wisconsin, USA.
Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. \& Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531-540.
Sheldrick, G. M. (1995). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2003). Acta Cryst. E59, o1478-o1480.

[^0]: © 2006 International Union of Crystallography All rights reserved

